Learning Plannable Representation with Causal InfoGAN

Thanard Kurutach¹*, Aviv Tamar¹*, Ge Yang², Stuart Russell¹, Pieter Abbeel¹

University of California, Berkeley¹ **University of Chicago²**

Overview

How to extend classical AI planning to image observations? GAN framework for learning a plannable latent space. Key idea – structure on dynamics of GAN noise Visual planning – imagine a goal directed sequence of observations

Motivation

Future robots need to operate inside homes and hospitals alongside humans. Main challenges:

- long-horizon problems
- unstructured environments
- manipulate objects

Classical Planning

- Pros
- Solve complex planning and **long-horizon** problems efficiently.

Rope Manipulation

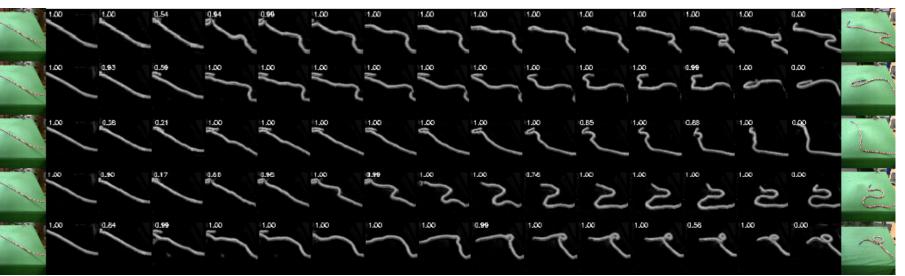
Goal:

Generate a plan from start observation to goal observation O_{start} to O_{goal} Key ideas:

Plan using linear interpolation in continuous latent space Transition is a local Gaussian model with small variance

Visual Plan Comparison:

Causal InfoGAN



InfoGAN

Cons

- Need to specify predicates, preconditions, and effects
- Detached from perception

Model-Free Reinforcement Learning

Pros

• Work with high-dimensional observations such as images

Cons

- Data demanding
- Difficult to define reward on images
- Task specific

Model-based RL with image inputs

Pros

Represent system knowledge for solving new tasks in zero shot.

Cons

• Currently limited to simple planning, manipulation problems such as object pushing, and shaped reward

Let's come up with a solution that combine the best of three landscapes!

Problem Formulation

Data: Sequential observations $\{o, o'\} \sim P_{data}$

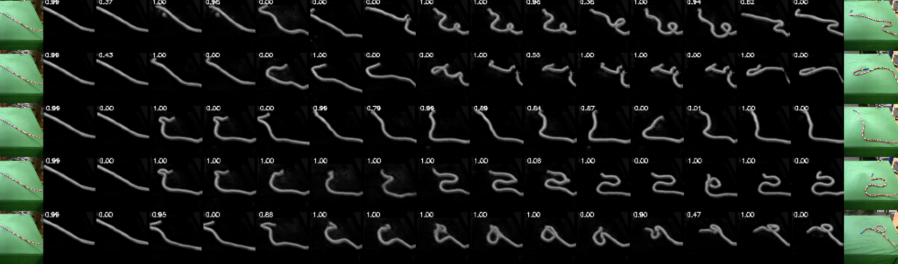
- Captures causality
- Random perturbations

Goal: Given o_{start} and o_{goal}, generate visual plan

• Break up long horizon task into sub-goals

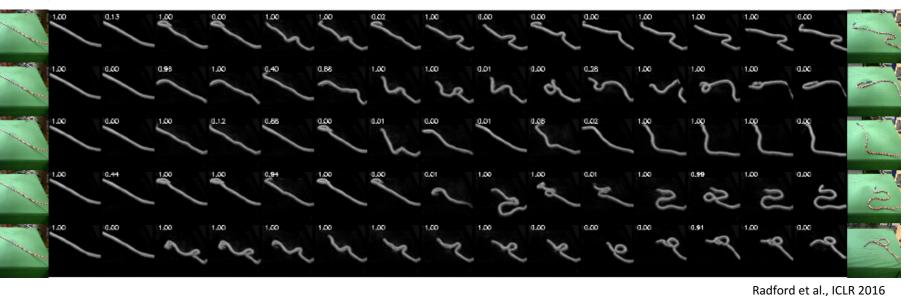
Gu et al., ICRA 2017 Levine et al., JMLR 2016

Ebert et al., CoRL 2017 Agrawal et al., NIPS 2016 Oh et al.. NIPS 2015

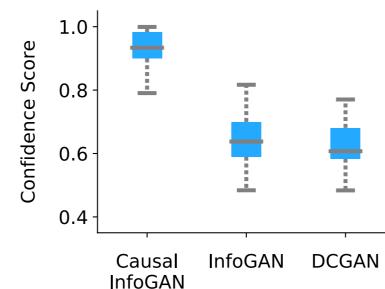


Chen et al., NIPS 2016

DCGAN



Numerical Evaluation



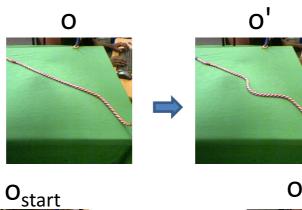
We train a classifier to predict the whether an observation pair is sequential, and compute the average of classifier score on visual trajectories.

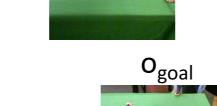
Classical Planning

Goal:

Generate a plan from start observation to goal observation O_{start} to O_{goal} Key ideas:

Plan using classical search such as Dijkstra's algorithm



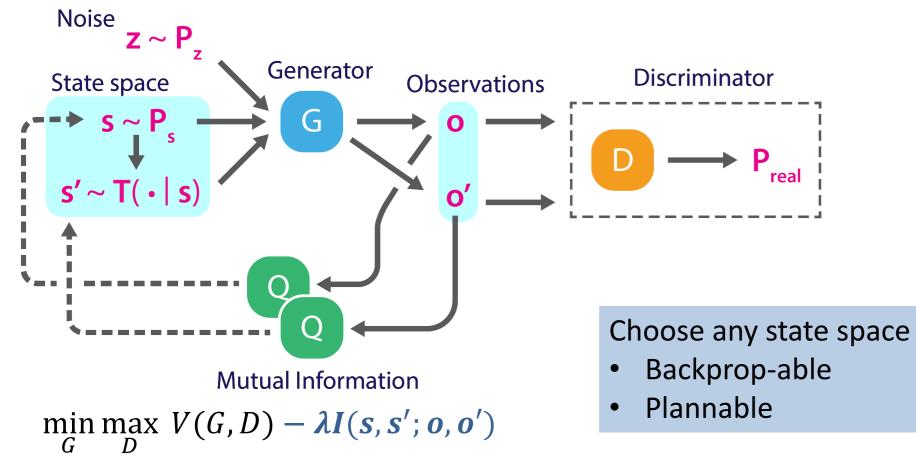


Can be later input to inverse model / RL for actions.

Rope data from Nair et al., ICRA 201

Causal InfoGAN

To solve problem above, we break it down into 3 steps -- map observations to states, plan from start state to goal state, and generate visual plans from state trajectories. Causal InfoGAN allows us to learn the state space such that efficient planning is possible. It is trained to explain causality in the data.



$$V(G,D) = \mathbb{E}_{o,o' \sim P_{data}} [\log D(o,o')] + \mathbb{E}_{o,o' \sim P_G} [\log(1 - D(o,o'))]$$
$$I(s,s';o,o') \geq \mathbb{E}_{P_{s,s'},P_z} [\log Q_{s,s'|o,o'} - \log P_{s,s'}]$$
Disentangled Q: classify O \rightarrow S

 $Q_{S,S'|O,O'} = Q_{S|O}Q_{S'|O'}$

Predicates and transitions are learned. **State Abstractions: Planning:**

CiGAN Dijkstra K-mean

Trajectories

CiGAN learn abstractions and plan according to causality in the data.

Numerical Evaluation:

	Planning Success Rate]
Causal-InfoGAN	98%]
K-means	12.25%]
Temporal K-means	7.0%	[Baram et al, 2016]
Spectral clustering	8.75%	[Srinivas et al., 2016]

Link to paper and code available at: sites.google.com/view/ causal-infogan

Conclusion

Causal InfoGAN

- Deep generative models that explain dynamical systems
- General framework for structuring latent space so that is easy to plan with. Visually interpretable plans!

Bridge classical planning + representation learning Outlook

Deeper combination of learning and planning.